Goto

Collaborating Authors

 Halifax Regional Municipality


Improved IR-based Bug Localization with Intelligent Relevance Feedback

arXiv.org Artificial Intelligence

Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.


Solar device transforms used tires to help purify water so that it's drinkable

FOX News

Clean drinking water is available even in the most remote areas. Imagine a world where clean drinking water is readily available even in the most remote areas. This vision is becoming a reality thanks to innovative research from scientists in Canada. A team of scientists at Dalhousie University in Halifax, Nova Scotia, has developed a groundbreaking device that could revolutionize water desalination, offering hope to millions facing water scarcity worldwide. At the heart of this innovation is a floating solar still, a device that harnesses the sun's energy to purify seawater.


BenthicNet: A global compilation of seafloor images for deep learning applications

arXiv.org Artificial Intelligence

Advances in underwater imaging enable the collection of extensive seafloor image datasets that are necessary for monitoring important benthic ecosystems. The ability to collect seafloor imagery has outpaced our capacity to analyze it, hindering expedient mobilization of this crucial environmental information. Recent machine learning approaches provide opportunities to increase the efficiency with which seafloor image datasets are analyzed, yet large and consistent datasets necessary to support development of such approaches are scarce. Here we present BenthicNet: a global compilation of seafloor imagery designed to support the training and evaluation of large-scale image recognition models. An initial set of over 11.4 million images was collected and curated to represent a diversity of seafloor environments using a representative subset of 1.3 million images. These are accompanied by 2.6 million annotations translated to the CATAMI scheme, which span 190,000 of the images. A large deep learning model was trained on this compilation and preliminary results suggest it has utility for automating large and small-scale image analysis tasks. The compilation and model are made openly available for use by the scientific community at https://doi.org/10.20383/103.0614.


Gravity-Informed Deep Learning Framework for Predicting Ship Traffic Flow and Invasion Risk of Non-Indigenous Species via Ballast Water Discharge

arXiv.org Artificial Intelligence

Invasive species in water bodies pose a major threat to the environment and biodiversity globally. Due to increased transportation and trade, non-native species have been introduced to new environments, causing damage to ecosystems and leading to economic losses in agriculture, forestry, and fisheries. Therefore, there is a pressing need for risk assessment and management techniques to mitigate the impact of these invasions. This study aims to develop a new physics-inspired model to forecast maritime shipping traffic and thus inform risk assessment of invasive species spread through global transportation networks. Inspired by the gravity model for international trades, our model considers various factors that influence the likelihood and impact of vessel activities, such as shipping flux density, distance between ports, trade flow, and centrality measures of transportation hubs. Additionally, by analyzing the risk network of invasive species, we provide a comprehensive framework for assessing the invasion threat level given a pair of origin and destination. Accordingly, this paper introduces transformers to gravity models to rebuild the short- and long-term dependencies that make the risk analysis feasible. Thus, we introduce a physics-inspired framework that achieves an 89% segmentation accuracy for existing and non-existing trajectories and an 84.8% accuracy for the number of vessels flowing between key port areas, representing more than 10% improvement over the traditional deep-gravity model. Along these lines, this research contributes to a better understanding of invasive species risk assessment. It allows policymakers, conservationists, and stakeholders to prioritize management actions by identifying high-risk invasion pathways. Besides, our model is versatile and can include new data sources, making it suitable for assessing species invasion risks in a changing global landscape.


Within-basket Recommendation via Neural Pattern Associator

arXiv.org Artificial Intelligence

Within-basket recommendation (WBR) refers to the task of recommending items to the end of completing a non-empty shopping basket during a shopping session. While the latest innovations in this space demonstrate remarkable performance improvement on benchmark datasets, they often overlook the complexity of user behaviors in practice, such as 1) co-existence of multiple shopping intentions, 2) multi-granularity of such intentions, and 3) interleaving behavior (switching intentions) in a shopping session. This paper presents Neural Pattern Associator (NPA), a deep item-association-mining model that explicitly models the aforementioned factors. Specifically, inspired by vector quantization, the NPA model learns to encode common user intentions (or item-combination patterns) as quantized representations (a.k.a. codebook), which permits identification of users's shopping intentions via attention-driven lookup during the reasoning phase. This yields coherent and self-interpretable recommendations. We evaluated the proposed NPA model across multiple extensive datasets, encompassing the domains of grocery e-commerce (shopping basket completion) and music (playlist extension), where our quantitative evaluations show that the NPA model significantly outperforms a wide range of existing WBR solutions, reflecting the benefit of explicitly modeling complex user intentions.


Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset

arXiv.org Artificial Intelligence

In this paper, we propose leveraging causal generative learning as an interpretable tool for explaining image classifiers. Specifically, we present a generative counterfactual inference approach to study the influence of visual features (i.e., pixels) as well as causal factors through generative learning. To this end, we first uncover the most influential pixels on a classifier's decision by varying the value of a causal attribute via counterfactual inference and computing both Shapely and contrastive explanations for counterfactual images with these different attribute values. We then establish a Monte-Carlo mechanism using the generator of a causal generative model in order to adapt Shapley explainers to produce feature importances for the human-interpretable attributes of a causal dataset in the case where a classifier has been trained exclusively on the images of the dataset. Finally, we present optimization methods for creating counterfactual explanations of classifiers by means of counterfactual inference, proposing straightforward approaches for both differentiable and arbitrary classifiers. We exploit the Morpho-MNIST causal dataset as a case study for exploring our proposed methods for generating counterfacutl explantions. We employ visual explanation methods from OmnixAI open source toolkit to compare them with our proposed methods. By employing quantitative metrics to measure the interpretability of counterfactual explanations, we find that our proposed methods of counterfactual explanation offer more interpretable explanations compared to those generated from OmnixAI. This finding suggests that our methods are well-suited for generating highly interpretable counterfactual explanations on causal datasets.


SynthScribe: Deep Multimodal Tools for Synthesizer Sound Retrieval and Exploration

arXiv.org Artificial Intelligence

Synthesizers are powerful tools that allow musicians to create dynamic and original sounds. Existing commercial interfaces for synthesizers typically require musicians to interact with complex low-level parameters or to manage large libraries of premade sounds. To address these challenges, we implement SynthScribe -- a fullstack system that uses multimodal deep learning to let users express their intentions at a much higher level. We implement features which address a number of difficulties, namely 1) searching through existing sounds, 2) creating completely new sounds, 3) making meaningful modifications to a given sound. This is achieved with three main features: a multimodal search engine for a large library of synthesizer sounds; a user centered genetic algorithm by which completely new sounds can be created and selected given the users preferences; a sound editing support feature which highlights and gives examples for key control parameters with respect to a text or audio based query. The results of our user studies show SynthScribe is capable of reliably retrieving and modifying sounds while also affording the ability to create completely new sounds that expand a musicians creative horizon.


Exceedance Probability Forecasting via Regression for Significant Wave Height Prediction

arXiv.org Artificial Intelligence

Significant wave height forecasting is a key problem in ocean data analytics. Predicting the significant wave height is crucial for estimating the energy production from waves. Moreover, the timely prediction of large waves is important to ensure the safety of maritime operations, e.g. passage of vessels. We frame the task of predicting extreme values of significant wave height as an exceedance probability forecasting problem. Accordingly, we aim at estimating the probability that the significant wave height will exceed a predefined threshold. This task is usually solved using a probabilistic binary classification model. Instead, we propose a novel approach based on a forecasting model. The method leverages the forecasts for the upcoming observations to estimate the exceedance probability according to the cumulative distribution function. We carried out experiments using data from a buoy placed in the coast of Halifax, Canada. The results suggest that the proposed methodology is better than state-of-the-art approaches for exceedance probability forecasting.


Using AI, Mayflower Autonomous Ship concludes trans-Atlantic journey - IT-Online

#artificialintelligence

In a voyage lasting 40 days and conquering approximately 3 500 unmanned miles at sea, the Mayflower Autonomous Ship arrived in North America in Halifax, Nova Scotia on June 5, 2022. Following two years of design, construction and AI model training, the Mayflower Autonomous Ship (MAS) was officially launched in September 2020. Fast forward to 5 June 2022, and the ship completed an historic transatlantic voyage from Plymouth, UK to its North American arrival in Halifax, Nova Scotia. With no human captain or onboard crew, MAS is the first self-directed autonomous ship with technology that is scalable and extendible to traverse the Atlantic Ocean. MAS was designed and built by marine research non-profit ProMare with IBM acting as lead technology and science partner, with IBM automation, AI and edge computing technologies powering the ship's artificial intelligence (AI) captain to guide the vessel and make real-time decisions while at sea.


AI Mayflower ship completes its journey across the Atlantic Ocean in 40 days

Daily Mail - Science & tech

A robotic recreation of the 17th century Mayflower ship has finally completed a 3,500 journey across the Atlantic Ocean, in 40 days. Mayflower Autonomous Ship (MAS) – a 50-foot-long autonomous research vessel piloted by artificial intelligence (AI) – arrived in Halifax, Canada on Sunday (June 5). MAS, which carried no humans on board and relied on artificial intelligence, had set sail from Turnchapel Wharf, Plymouth, England in the early hours of April 27. The ship was smooth sailing until the second week of May when a generator issue diverted it to Portugal's Azores islands so a team member could fly in to do repairs. During the latter stages of the journey the decision was made to head to Halifax – as opposed to Virginia as previously planned – due to more mechanical issues.